Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Reduced TOR signaling sustains hyphal development in Candida albicans by lowering Hog1 basal activity.

Identifieur interne : 000F94 ( Main/Exploration ); précédent : 000F93; suivant : 000F95

Reduced TOR signaling sustains hyphal development in Candida albicans by lowering Hog1 basal activity.

Auteurs : Chang Su [États-Unis] ; Yang Lu ; Haoping Liu

Source :

RBID : pubmed:23171549

Descripteurs français

English descriptors

Abstract

Candida albicans is able to undergo reversible morphological changes between yeast and hyphal forms in response to environmental cues. This morphological plasticity is essential for its pathogenesis. Hyphal development requires two temporally linked changes in promoter chromatin, which is sequentially regulated by temporarily clearing the transcription inhibitor Nrg1 upon activation of cAMP/protein kinase A and promoter recruitment of the histone deacetylase Hda1 under reduced target of rapamycin (Tor1) signaling. The GATA family transcription factor Brg1 recruits Hda1 to promoters for sustained hyphal development, and BRG1 expression is a readout of reduced Tor1 signaling. How Tor1 regulates BRG1 expression is not clear. Using a forward genetic screen for mutants that can sustain hyphal elongation in rich media, we found hog1, ssk2, and pbs2 mutants of the HOG mitogen-activated protein kinase pathway to express BRG1 irrespective of rapamycin. Furthermore, rapamycin lowers the basal activity of Hog1 through the functions of the two Hog1 tyrosine phosphatases Ptp2 and Ptp3. Active Hog1 represses the expression of BRG1 via the transcriptional repressor Sko1 as Sko1 disassociates from the promoter of BRG1 in the hog1 mutant or in rapamycin. Our data suggest that reduced Tor1 signaling lowers Hog1 basal activity via Hog1 phosphatases to activate BRG1 expression for hyphal elongation.

DOI: 10.1091/mbc.E12-06-0477
PubMed: 23171549
PubMed Central: PMC3564525


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Reduced TOR signaling sustains hyphal development in Candida albicans by lowering Hog1 basal activity.</title>
<author>
<name sortKey="Su, Chang" sort="Su, Chang" uniqKey="Su C" first="Chang" last="Su">Chang Su</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lu, Yang" sort="Lu, Yang" uniqKey="Lu Y" first="Yang" last="Lu">Yang Lu</name>
</author>
<author>
<name sortKey="Liu, Haoping" sort="Liu, Haoping" uniqKey="Liu H" first="Haoping" last="Liu">Haoping Liu</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23171549</idno>
<idno type="pmid">23171549</idno>
<idno type="doi">10.1091/mbc.E12-06-0477</idno>
<idno type="pmc">PMC3564525</idno>
<idno type="wicri:Area/Main/Corpus">001083</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001083</idno>
<idno type="wicri:Area/Main/Curation">001083</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001083</idno>
<idno type="wicri:Area/Main/Exploration">001083</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Reduced TOR signaling sustains hyphal development in Candida albicans by lowering Hog1 basal activity.</title>
<author>
<name sortKey="Su, Chang" sort="Su, Chang" uniqKey="Su C" first="Chang" last="Su">Chang Su</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lu, Yang" sort="Lu, Yang" uniqKey="Lu Y" first="Yang" last="Lu">Yang Lu</name>
</author>
<author>
<name sortKey="Liu, Haoping" sort="Liu, Haoping" uniqKey="Liu H" first="Haoping" last="Liu">Haoping Liu</name>
</author>
</analytic>
<series>
<title level="j">Molecular biology of the cell</title>
<idno type="eISSN">1939-4586</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Candida albicans (cytology)</term>
<term>Candida albicans (enzymology)</term>
<term>Candida albicans (growth & development)</term>
<term>Enzyme Induction (MeSH)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Hyphae (cytology)</term>
<term>Hyphae (enzymology)</term>
<term>Hyphae (growth & development)</term>
<term>Mitogen-Activated Protein Kinases (genetics)</term>
<term>Mitogen-Activated Protein Kinases (metabolism)</term>
<term>Phenotype (MeSH)</term>
<term>Promoter Regions, Genetic (MeSH)</term>
<term>Protein Binding (MeSH)</term>
<term>Protein Tyrosine Phosphatases (metabolism)</term>
<term>Repressor Proteins (metabolism)</term>
<term>Signal Transduction (MeSH)</term>
<term>Sirolimus (pharmacology)</term>
<term>Stress, Physiological (MeSH)</term>
<term>TOR Serine-Threonine Kinases (antagonists & inhibitors)</term>
<term>TOR Serine-Threonine Kinases (metabolism)</term>
<term>Up-Regulation (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Candida albicans (croissance et développement)</term>
<term>Candida albicans (cytologie)</term>
<term>Candida albicans (enzymologie)</term>
<term>Hyphae (croissance et développement)</term>
<term>Hyphae (cytologie)</term>
<term>Hyphae (enzymologie)</term>
<term>Induction enzymatique (MeSH)</term>
<term>Liaison aux protéines (MeSH)</term>
<term>Mitogen-Activated Protein Kinases (génétique)</term>
<term>Mitogen-Activated Protein Kinases (métabolisme)</term>
<term>Phénotype (MeSH)</term>
<term>Protein Tyrosine Phosphatases (métabolisme)</term>
<term>Protéines de répression (métabolisme)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Régions promotrices (génétique) (MeSH)</term>
<term>Régulation de l'expression des gènes fongiques (MeSH)</term>
<term>Régulation positive (MeSH)</term>
<term>Sirolimus (pharmacologie)</term>
<term>Stress physiologique (MeSH)</term>
<term>Sérine-thréonine kinases TOR (antagonistes et inhibiteurs)</term>
<term>Sérine-thréonine kinases TOR (métabolisme)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Mitogen-Activated Protein Kinases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Fungal Proteins</term>
<term>Mitogen-Activated Protein Kinases</term>
<term>Protein Tyrosine Phosphatases</term>
<term>Repressor Proteins</term>
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Sérine-thréonine kinases TOR</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Candida albicans</term>
<term>Hyphae</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Candida albicans</term>
<term>Hyphae</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Candida albicans</term>
<term>Hyphae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Candida albicans</term>
<term>Hyphae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Candida albicans</term>
<term>Hyphae</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Candida albicans</term>
<term>Hyphae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Mitogen-Activated Protein Kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Mitogen-Activated Protein Kinases</term>
<term>Protein Tyrosine Phosphatases</term>
<term>Protéines de répression</term>
<term>Protéines fongiques</term>
<term>Sérine-thréonine kinases TOR</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Enzyme Induction</term>
<term>Gene Expression Regulation, Fungal</term>
<term>Phenotype</term>
<term>Promoter Regions, Genetic</term>
<term>Protein Binding</term>
<term>Signal Transduction</term>
<term>Stress, Physiological</term>
<term>Up-Regulation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Induction enzymatique</term>
<term>Liaison aux protéines</term>
<term>Phénotype</term>
<term>Régions promotrices (génétique)</term>
<term>Régulation de l'expression des gènes fongiques</term>
<term>Régulation positive</term>
<term>Stress physiologique</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Candida albicans is able to undergo reversible morphological changes between yeast and hyphal forms in response to environmental cues. This morphological plasticity is essential for its pathogenesis. Hyphal development requires two temporally linked changes in promoter chromatin, which is sequentially regulated by temporarily clearing the transcription inhibitor Nrg1 upon activation of cAMP/protein kinase A and promoter recruitment of the histone deacetylase Hda1 under reduced target of rapamycin (Tor1) signaling. The GATA family transcription factor Brg1 recruits Hda1 to promoters for sustained hyphal development, and BRG1 expression is a readout of reduced Tor1 signaling. How Tor1 regulates BRG1 expression is not clear. Using a forward genetic screen for mutants that can sustain hyphal elongation in rich media, we found hog1, ssk2, and pbs2 mutants of the HOG mitogen-activated protein kinase pathway to express BRG1 irrespective of rapamycin. Furthermore, rapamycin lowers the basal activity of Hog1 through the functions of the two Hog1 tyrosine phosphatases Ptp2 and Ptp3. Active Hog1 represses the expression of BRG1 via the transcriptional repressor Sko1 as Sko1 disassociates from the promoter of BRG1 in the hog1 mutant or in rapamycin. Our data suggest that reduced Tor1 signaling lowers Hog1 basal activity via Hog1 phosphatases to activate BRG1 expression for hyphal elongation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23171549</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>07</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1939-4586</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>24</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2013</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Molecular biology of the cell</Title>
<ISOAbbreviation>Mol Biol Cell</ISOAbbreviation>
</Journal>
<ArticleTitle>Reduced TOR signaling sustains hyphal development in Candida albicans by lowering Hog1 basal activity.</ArticleTitle>
<Pagination>
<MedlinePgn>385-97</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1091/mbc.E12-06-0477</ELocationID>
<Abstract>
<AbstractText>Candida albicans is able to undergo reversible morphological changes between yeast and hyphal forms in response to environmental cues. This morphological plasticity is essential for its pathogenesis. Hyphal development requires two temporally linked changes in promoter chromatin, which is sequentially regulated by temporarily clearing the transcription inhibitor Nrg1 upon activation of cAMP/protein kinase A and promoter recruitment of the histone deacetylase Hda1 under reduced target of rapamycin (Tor1) signaling. The GATA family transcription factor Brg1 recruits Hda1 to promoters for sustained hyphal development, and BRG1 expression is a readout of reduced Tor1 signaling. How Tor1 regulates BRG1 expression is not clear. Using a forward genetic screen for mutants that can sustain hyphal elongation in rich media, we found hog1, ssk2, and pbs2 mutants of the HOG mitogen-activated protein kinase pathway to express BRG1 irrespective of rapamycin. Furthermore, rapamycin lowers the basal activity of Hog1 through the functions of the two Hog1 tyrosine phosphatases Ptp2 and Ptp3. Active Hog1 represses the expression of BRG1 via the transcriptional repressor Sko1 as Sko1 disassociates from the promoter of BRG1 in the hog1 mutant or in rapamycin. Our data suggest that reduced Tor1 signaling lowers Hog1 basal activity via Hog1 phosphatases to activate BRG1 expression for hyphal elongation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Su</LastName>
<ForeName>Chang</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Yang</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Haoping</ForeName>
<Initials>H</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI099190</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM055155</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>11</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Biol Cell</MedlineTA>
<NlmUniqueID>9201390</NlmUniqueID>
<ISSNLinking>1059-1524</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012097">Repressor Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.24</RegistryNumber>
<NameOfSubstance UI="D020928">Mitogen-Activated Protein Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.3.48</RegistryNumber>
<NameOfSubstance UI="D017027">Protein Tyrosine Phosphatases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002176" MajorTopicYN="N">Candida albicans</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004790" MajorTopicYN="N">Enzyme Induction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025301" MajorTopicYN="N">Hyphae</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020928" MajorTopicYN="N">Mitogen-Activated Protein Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017027" MajorTopicYN="N">Protein Tyrosine Phosphatases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012097" MajorTopicYN="N">Repressor Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="Y">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015854" MajorTopicYN="N">Up-Regulation</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>11</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>11</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>7</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23171549</ArticleId>
<ArticleId IdType="pii">mbc.E12-06-0477</ArticleId>
<ArticleId IdType="doi">10.1091/mbc.E12-06-0477</ArticleId>
<ArticleId IdType="pmc">PMC3564525</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Curr Biol. 2005 Nov 22;15(22):2021-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16303561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2006 Feb;17(2):1018-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16339080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2006 Feb;5(2):347-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16467475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2007 Nov;9(11):1263-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17952063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2008 Jan;67(1):47-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18078440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2008 Apr;11(2):153-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18396450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2008 Jul;19(7):2741-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18434592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2008 Jul 17;4(1):28-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18621008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2008 Oct;19(10):4260-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18685084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2008 Dec;19(12):5456-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18843050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1999 Dec;181(24):7516-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10601209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1999 Dec;181(24):7524-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10601210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2001 Mar 1;20(5):1123-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11230135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2001 Apr;157(4):1523-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11290709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2001 May;183(10):3211-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11325951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2001 Apr;7(4):767-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11336700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2001 Jun;40(5):1067-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11401713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2001 Jul;67(7):2982-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11425711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2001 Jul;9(7):327-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11435107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2001 Nov;45(11):3162-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11600372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2001 Nov;12(11):3631-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11694594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Dec 28;276(52):48988-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11595734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2001 Dec;42(5):1243-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11886556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2002 Apr;184(7):2058-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11889116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2002 May;2(5):593-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12015967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Jun;9(6):1307-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12086627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2002 Oct;13(10):3452-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12388749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2002 Dec;162(4):1573-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12524333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2003 Jun 2;22(11):2668-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12773383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2004;279:53-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14560951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2004 Aug 1;39(3):309-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15306996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2004 Sep;15(9):4179-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15229284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2004 Oct 27;341:119-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15474295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1992 Dec;12(12):5394-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1448073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1993 Jul;134(3):717-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8349105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1994 May 19;369(6477):242-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8183345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1995 Sep 1;9(17):2117-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7657164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13217-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8917571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13223-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8917572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1997 Mar;17(3):1289-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9032256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Jul 11;272(28):17749-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9211927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1997 Jul 1;11(13):1690-702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9224718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 Jan;19(1):537-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9858577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1999 Mar;181(6):1868-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10074081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2009 Feb;5(2):e1000294</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19197361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2009 Mar;181(3):861-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19104072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2009 Apr 28;19(8):621-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19327993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2009 Aug;9(5):688-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19473261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2009 Dec;5(12):e1000783</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20041210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010 Feb;6(2):e1000752</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20140194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2010 Feb;75(3):579-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19943905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2010 Jul;47(7):587-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20388546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2010 Jul;30(14):3695-710</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20457806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2010 Jul;42(7):590-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20543849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(4):e18394</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21512583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2011 Jul;9(7):e1001105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21811397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2011 Dec;14(6):682-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22014725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 Dec;189(4):1177-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22174183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2012 Feb;11(2):168-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22194462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012;8(4):e1002663</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22536157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1999 May;181(10):3058-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10322006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1999 Oct;181(20):6339-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10515923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2004 Dec;54(5):1335-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15554973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2005 Apr;151(Pt 4):1033-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15817773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2005 Oct;58(1):6-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16164545</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Liu, Haoping" sort="Liu, Haoping" uniqKey="Liu H" first="Haoping" last="Liu">Haoping Liu</name>
<name sortKey="Lu, Yang" sort="Lu, Yang" uniqKey="Lu Y" first="Yang" last="Lu">Yang Lu</name>
</noCountry>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Su, Chang" sort="Su, Chang" uniqKey="Su C" first="Chang" last="Su">Chang Su</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F94 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000F94 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23171549
   |texte=   Reduced TOR signaling sustains hyphal development in Candida albicans by lowering Hog1 basal activity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23171549" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020